ALMA observations of recombination line and freefree emission from nearby starbursts

George J. Bendo UK ALMA Regional Centre Node Jodrell Bank Centre for Astrophysics ALMA can detect emission from photoionized gas in two forms:

- Free-free continuum emission
- Higher order recombination line emission
- This emission has two advantages over other commonly-used star formation tracers:
- It directly traces young, photoionizing stars.
- It is unaffected by dust attenuation.

Free-free emission

Recombination line emission

In this talk, I will talk about three galaxies where ALMA has detected recombination line emission:

- NGC 253 (spiral galaxy with nuclear starburst)
 - Bendo et al., 2015, MNRAS, 450, L80
 - Meier et al., 2015, ApJ, 801, 63
 - Ando et al., 2017, submitted
 - Nakanishi et al., 2017, in preparation

NGC 4945 (spiral galaxy with starburst/AGN nucleus)

- Bendo et al., 2016, MNRAS, 463, 252
- Hinkel et al., 2017, in preparation

NGC 5253 (low metallicity blue compact dwarf galaxy)

- Bendo et al., 2017, arXiv (1707.06184)
- Miura et al., 2017, in preparation

NGC 253 summary results

- Electron temperatures (from line/continuum ratio) is 3700-4500 K.
 - Matches measurements from inner regions of Milky Way Galaxy.
- SFR for central 20"x10" is $1.73 \pm 0.12 \text{ M}_{\odot} \text{ yr}^{-1}$.
 - Other published SFRs from mm/radio data show a lot of scatter.
 - Near-infrared dust attenuation is measured as $A_J = 3.4 \pm 0.2$ and $A_K = 2.1 \pm 0.2$.
 - ~1.5 magnitudes higher than previously-published measurements based on near-infrared data.

.

NGC 4945 results

ullet

- Free-free and recombination line emission primarily from exponential disc with scale length of ~2.1" (~40 pc).
 - No evidence of central peak associated with AGN.
 - Electron temperatures (from line/continuum ratio) is 5400 K.
 - Matches measurements from inner regions of Milky Way Galaxy.
- SFR for central disc is $4.35 \pm 0.25 M_{\odot} \text{ yr}^{-1}$.
 - In comparison, mid-infrared flux densities (22, 24 µm) appear strongly affected by dust extinction.

NGC 5253 results

 \bullet

- All detected recombination line emission originates from central 0.6" diameter region.
 - Nuclear star formation rate is 0.087 \pm 0.013 M_{\odot} yr⁻¹.
 - Abnormally hot dust temperatures cause SFR from midinfrared (22 μm) data to be high and SFRs from farinfrared (70, 160 μm) data to be low.
 - SFRs from total infrared flux and from Ha data corrected with near-infrared lines match H30a result more closely.

Summary

- Millimetre free-free and recombination line emission can be detected from many nearby starbursts using ALMA.
 - Early analyses with ALMA data have revealed the following:
 - SFRs from lower-frequency radio data lack accuracy and precision.
 - SFRs from individual infrared bands are affected by extreme dust effects.
 - SFRs from total infrared fluxes may be more reliable than other radio or infrared metrics in these types of starbursts.
- Future ALMA observations will allow us to examine the efficacy of other star formation tracers more thoroughly.