Measuring star formation rates in nearby dust-obscured starbursts with ALMA

George J. Bendo

UK ALMA Regional Centre Node Jodrell Bank Centre for Astrophysics The University of Manchester

This presentation/publication has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730562 [RadioNet].

- ALMA can detect emission from photoionized gas in two forms:
 - Free-free continuum emission
- Higher order hydrogen recombination line emission
- This emission has two advantages over other commonly-used star formation tracers:
- It directly traces young, photoionizing stars.
- It is unaffected by dust attenuation.

Free-free emission

Three galaxies where ALMA has detected recombination line emission:

NGC 253 (spiral galaxy with nuclear starburst)

- Bendo et al., 2015, MNRAS, 450, L80
- Meier et al., 2015, ApJ, 801, 63

0

- Ando et al., 2017, ApJ, 849, 81
- Nakanishi et al., 2018, in preparation

NGC 4945 (spiral galaxy with starburst/AGN nucleus)

- Bendo et al., 2016, MNRAS, 463, 252
- Henkel et al., 2018, A&A, 615, A155

NGC 5253 (low metallicity blue compact dwarf galaxy)

- Bendo et al., 2017, MNRAS, 472, 1239
- Miura et al., 2018, in press

NGC 253

Near-infrared image (Jarrett et al. 2003)

SFR Tracer	Measured SFR (M _☉ /yr)
99.02 GHz free-free (ALMA)	1.59 ± 0.16
H40α (ALMA)	1.87 ± 0.18
H40α (Puxley et al. 1997)	3.8 ± 0.8
H53α, H92α (Rodriguez-Rico et al. 2006)	0.60
H58α, H59α (Kepley et al. 2011)	0.54
Radio continuum (43 GHz; Rodriguez-Rico et al. 2005)	0.72
Radio continuum (25 GHz; Ott et al. 2005)	4.9 ± 0.5
Radio supernovae analysis (Rampardarath et al. 2014)	<4.9

NGC 253 summary results

- SFR for central 20"x10" is $1.73 \pm 0.12 \text{ M}_{\odot} \text{ yr}^{-1}$.
- Published range of values from mm/radio data is 0.5-4.9 M_{\odot} yr⁻¹.
- Lower frequency recombination-line emission and free-free emission potentially affected by gas opacity issues.
- Some problems with calibration of radio continuum emission as a star formation tracer.

NGC 4945

Near-infrared image (Jarrett et al. 2003)

SFR Tracer	Measured SFR (M_{\odot} /yr)
Mid-infrared (22, 24 µm)	0.4
Total infrared (24-500 μm)	3.0 ± 0.3
85.69 GHz free-free (ALMA)	4.42 ± 0.49
H42α (ALMA)	4.29 ± 0.07
Radio continuum (4-23 GHz)	7 - 13
H91α, H92α (Roy et al. 2010)	2 - 8
Radio supernovae analysis (Lenc & Tingay 2009)	7.5 - 1170

NGC 4945 results

- SFR for central disc is $4.35 \pm 0.25 \text{ M}_{\odot} \text{ yr}^{-1}$.
- Total infrared flux gives SFR within ~30% of ALMA data.
- SFR from mid-infrared (22, 24 µm) flux densities are 10× lower than ALMA results.
 - Dust is optically thick in mid-infrared.
- SFRs from radio continuum data are higher than ALMA measurements.
 - Conversion from radio continuum emission to SFR affected by calibration problems related to assumptions about the spectral slope.

NGC 5253

SFR Tracer	Measured SFR (M _☉ /yr)
H α (extinction corrected using Pa α , Pa β)	0.07 ± 0.02
Mid-infrared (22 µm)	0.30 ± 0.02
Far-infrared (70 µm)	0.068 ± 0.004
Far-infrared (160 µm)	0.050 ± 0.003
Total infrared (22-500 µm)	0.110 ± 0.007
Η30α (ALMA)	0.079 ± 0.014
Hα + 22 μm	0.139 ± 0.008
Hα + total infrared	0.0353 ± 0.0012

NGC 5253 results

lacksquare

0

- Nuclear SFR is 0.087 \pm 0.013 M_{\odot} yr⁻¹.
- SFR from ultraviolet data are fairly consistent with ALMA result but slightly high.
 - Slightly higher SFR in past could explain this result.
 - SFR from H α + total infrared flux matches ALMA results.
 - SFRs based on mid-infrared data are ~3× higher than other SFRs.
 - Low mertallicity results in low interstellar dust densities.
 - Low dust extinction causes the dust to be abnormally hot.
 - Mid-infrared flux is abnormally high.

Summary

 \bullet

 $\mathbf{\bullet}$

- Millimetre free-free and recombination line emission can be detected from many nearby starbursts using ALMA.
 - Early analyses with ALMA data have revealed problems with SFRs from lower-frequency radio data and mid-infrared data.
 - Comparisons with ALMA data suggest that total infrared fluxes may be reliable star formation tracers in heavily obscured regions.
- Future ALMA observations will allow us to examine the efficacy of other star formation tracers more thoroughly.